Reconciliator
Module containing the Reconciliator class.
ReconciliationTransformers
¶
Bases: Enum
Transformers Available for the Reconciliation Algorithm.
Source code in mkdocs/lakehouse_engine/packages/algorithms/reconciliator.py
ReconciliationType
¶
Reconciliator
¶
Bases: Executable
Class to define the behavior of an algorithm that checks if data reconciles.
Checking if data reconciles, using this algorithm, is a matter of reading the 'truth' data and the 'current' data. You can use any input specification compatible with the lakehouse engine to read 'truth' or 'current' data. On top of that, you can pass a 'truth_preprocess_query' and a 'current_preprocess_query' so you can preprocess the data before it goes into the actual reconciliation process. Moreover, you can use the 'truth_preprocess_query_args' and 'current_preprocess_query_args' to pass additional arguments to be used to apply additional operations on top of the dataframe, resulting from the previous steps. With these arguments you can apply additional operations like caching or persisting the Dataframe. The way to pass the additional arguments for the operations is similar to the TransformSpec, but only a few operations are allowed. Those are defined in ReconciliationTransformers.AVAILABLE_TRANSFORMERS.
The reconciliation process is focused on joining 'truth' with 'current' by all provided columns except the ones passed as 'metrics'. After that it calculates the differences in the metrics attributes (either percentage or absolute difference). Finally, it aggregates the differences, using the supplied aggregation function (e.g., sum, avg, min, max, etc).
All of these configurations are passed via the ACON to instantiate a ReconciliatorSpec object.
Note
It is crucial that both the current and truth datasets have exactly the same structure.
Note
You should not use 0 as yellow or red threshold, as the algorithm will verify if the difference between the truth and current values is bigger or equal than those thresholds.
Note
The reconciliation does not produce any negative values or percentages, as we use the absolute value of the differences. This means that the recon result will not indicate if it was the current values that were bigger or smaller than the truth values, or vice versa.
Source code in mkdocs/lakehouse_engine/packages/algorithms/reconciliator.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
|
__init__(acon)
¶
Construct Algorithm instances.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
acon |
dict
|
algorithm configuration. |
required |
Source code in mkdocs/lakehouse_engine/packages/algorithms/reconciliator.py
execute()
¶
Reconcile the current results against the truth dataset.
Source code in mkdocs/lakehouse_engine/packages/algorithms/reconciliator.py
get_current_results()
¶
Get the current results from the table that we are checking if it reconciles.
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame containing the current results. |
Source code in mkdocs/lakehouse_engine/packages/algorithms/reconciliator.py
get_source_of_truth()
¶
Get the source of truth (expected result) for the reconciliation process.
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame containing the source of truth. |