Sensor from Kafka
This shows how to create a Sensor to detect new data from Kafka.
Configuration required to have a Sensor
- sensor_id: A unique identifier of the sensor in a specific job.
- assets: List of assets considered for the sensor, which are considered as available once the
sensor detects new data and status is
ACQUIRED_NEW_DATA
. - control_db_table_name: Name of the sensor control table.
- input_spec: Input spec with the upstream source.
- preprocess_query: Query to filter data returned by the upstream.
This parameter is only needed when the upstream data have to be filtered,
in this case a custom query should be created with the source table as sensor_new_data
.
- base_checkpoint_location: Spark streaming checkpoints to identify if the upstream has new data.
- fail_on_empty_result: Flag representing if it should raise
NoNewDataException
when there is no new data detected from upstream.
If you want to know more please visit the definition of the class here.
Scenarios
This covers the following scenarios of using the Sensor:
- The
fail_on_empty_result=True
(the default and SUGGESTED behaviour). - The
fail_on_empty_result=False
.
Data from Kafka, in streaming mode, will be consumed, so if there is any new data in the kafka topic it will give condition to proceed to the next task.
fail_on_empty_result
as True (default and SUGGESTED)
from lakehouse_engine.engine import execute_sensor
acon = {
"sensor_id": "MY_SENSOR_ID",
"assets": ["MY_SENSOR_ASSETS"],
"control_db_table_name": "my_database.lakehouse_engine_sensors",
"input_spec": {
"spec_id": "sensor_upstream",
"read_type": "streaming",
"data_format": "kafka",
"options": {
"kafka.bootstrap.servers": "KAFKA_SERVER",
"subscribe": "KAFKA_TOPIC",
"startingOffsets": "earliest",
"kafka.security.protocol": "SSL",
"kafka.ssl.truststore.location": "TRUSTSTORE_LOCATION",
"kafka.ssl.truststore.password": "TRUSTSTORE_PWD",
"kafka.ssl.keystore.location": "KEYSTORE_LOCATION",
"kafka.ssl.keystore.password": "KEYSTORE_PWD",
},
},
"base_checkpoint_location": "s3://my_data_product_bucket/checkpoints",
"fail_on_empty_result": True,
}
execute_sensor(acon=acon)
fail_on_empty_result
as False
Using fail_on_empty_result=False
, in which the execute_sensor
function returns a boolean
representing if it
has acquired new data. This value can be used to execute or not the next steps.
from lakehouse_engine.engine import execute_sensor
acon = {
[...],
"fail_on_empty_result": False
}
acquired_data = execute_sensor(acon=acon)