Sensor from JDBC
This shows how to create a Sensor to detect new data from a JDBC table.
Configuration required to have a Sensor
- jdbc_args: Arguments of the JDBC upstream.
- generate_sensor_query: Generates a Sensor query to consume data from the upstream, this function can be used on
preprocess_query
ACON option.- sensor_id: The unique identifier for the Sensor.
- filter_exp: Expression to filter incoming new data.
A placeholder
?upstream_key
and?upstream_value
can be used, example:?upstream_key > ?upstream_value
so that it can be replaced by the respective values from the sensorcontrol_db_table_name
for this specific sensor_id. - control_db_table_name: Sensor control table name.
- upstream_key: the key of custom sensor information to control how to identify new data from the upstream (e.g., a time column in the upstream).
- upstream_value: the first upstream value to identify new data from the upstream (e.g., the value of a time present in the upstream). Note: This parameter will have effect just in the first run to detect if the upstream have new data. If it's empty the default value applied is
-2147483647
. - upstream_table_name: Table name to consume the upstream value. If it's empty the default value applied is
sensor_new_data
.
If you want to know more please visit the definition of the class here.
Scenarios
This covers the following scenarios of using the Sensor:
- Generic JDBC template with
fail_on_empty_result=True
(the default and SUGGESTED behaviour). - Generic JDBC template with
fail_on_empty_result=False
.
Data from JDBC, in batch mode, will be consumed. If there is new data based in the preprocess query from the source table, it will trigger the condition to proceed to the next task.
fail_on_empty_result
as True (default and SUGGESTED)
from lakehouse_engine.engine import execute_sensor, generate_sensor_query
acon = {
"sensor_id": "MY_SENSOR_ID",
"assets": ["MY_SENSOR_ASSETS"],
"control_db_table_name": "my_database.lakehouse_engine_sensors",
"input_spec": {
"spec_id": "sensor_upstream",
"read_type": "batch",
"data_format": "jdbc",
"jdbc_args": {
"url": "JDBC_URL",
"table": "JDBC_DB_TABLE",
"properties": {
"user": "JDBC_USERNAME",
"password": "JDBC_PWD",
"driver": "JDBC_DRIVER",
},
},
"options": {
"compress": True,
},
},
"preprocess_query": generate_sensor_query(
sensor_id="MY_SENSOR_ID",
filter_exp="?upstream_key > '?upstream_value'",
control_db_table_name="my_database.lakehouse_engine_sensors",
upstream_key="UPSTREAM_COLUMN_TO_IDENTIFY_NEW_DATA",
),
"base_checkpoint_location": "s3://my_data_product_bucket/checkpoints",
"fail_on_empty_result": True,
}
execute_sensor(acon=acon)
fail_on_empty_result
as False
Using fail_on_empty_result=False
, in which the execute_sensor
function returns a boolean
representing if it
has acquired new data. This value can be used to execute or not the next steps.
from lakehouse_engine.engine import execute_sensor
acon = {
[...],
"fail_on_empty_result": False
}
acquired_data = execute_sensor(acon=acon)